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Abstract

In many applications, convective heat transfer is coupled with conductive and radiative heat transfer which
generate temperature gradients along the walls and may greatly a�ect natural convective heat transfer. In this paper,
the in¯uence of the non-uniformity of wall temperature on the heat transfer by natural convection along a vertical

plate having a linearly distributed temperature (characterized by the slope S ) is pointed out. Heat transfer
correlations giving Nusselt number vs Rayleigh number and S for both laminar and turbulent ¯ows are
obtained. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In many processes, natural convective heat transfer

along walls is coupled with conductive and radiative

heat transfer. This is typically the case in radiant heat-

ing of enclosures. Radiant heating generates tempera-

ture gradients along the walls; the resulting natural

convection heat transfer may be greatly a�ected by

these heterogeneous wall temperatures. By the way,

classical correlations of natural convection along an

isothermal vertical wall cannot be used without a lack

of precision.

Since Schmidt and Beckmann experiments in 1930

[1], the study of natural convection along a vertical ¯at

plate has been greatly investigated due to its extensive

applications in engineering like electronic cooling

equipment, building application or crystal growth pro-

cesses. Di�erent boundary conditions have been stu-

died, works on the subject have mostly dealt with

constant wall temperature or uniform heat ¯ux, the

case of an isothermal wall immersed in a strati®ed

medium has received great attention too. Gebhart et

al. [2] made a complete synthesis of these studies, but

concerning natural convective heat transfer along a

non-isothermal wall immersed in an isothermal me-

dium, literature is rather poor.

When the environment is isothermal and stagnant, a

coordinate transformation allows to simplify the steady

laminar boundary-layer equations from partial di�er-

ential equations to ordinary di�erential equations.

Sparrow and Gregg [3] gave a solution of this system

in the case of exponential and power law temperature

distributions. They showed the in¯uence of the wall

temperature distribution on heat transfer but they did

not ®nd a simple relation to express it. Afterwards,

Yang et al. [4] found a new similarity solution of the

boundary-layer equations for more complicated wall

temperature distributions. Their conclusions were simi-

lar to those of Sparrow and Gregg: heat transfer is

greatly a�ected by the wall temperature distribution.

They showed that the local temperature di�erence

between the wall and the medium (DT ) is not su�cient

to determine the local heat ¯ux. Classical correlations
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for a uniform value of DT along the wall cannot be

used in such problems. Further, Semenov [5] derived

the system of ordinary di�erential equations for all

possible distributions of the wall and environment tem-

perature leading to a similarity solution of the steady

state boundary-layer equations. He chose the tempera-

ture di�erence at the leading edge of the wall as the
characteristic temperature di�erence.

Similarity transformations are limited to few speci®c

cases, so research has been investigated in order to

expand available solutions to include problems with

nonsimilar surface conditions. Series expansion
methods were used by Yang et al. [6] in the case of ex-

ponential and sinusoidal wall temperature distribution.

Kao et al. [7] developed methods of local similarity

and local non-similarity for cases with non-uniform

wall temperature. Other researchers conducted investi-

gations using various methods and techniques to

handle with particular con®gurations [8,9]. Recent

papers concerning free convection in porous media

used these methods to handle with power law, expo-

nential or sinusoidal wall temperature [10,11].

These methods cannot be applied with total con®-

dence to problems of arbitrary wall temperature distri-

bution. From this consideration, Lee and Yovanovitch

[12] developed a new approximate method to study the

boundary-layer ¯ow over a ¯at plate having an arbi-
trary surface temperature variation. They carried out

the linearization of the conservation equations by

introducing an e�ective velocity which characterizes

Nomenclature

g gravitational force
Gr Grashof number (=gbDTx 3/n 2)
l Van Driest length

Nux local Nusselt number
Nu average Nusselt number
Pr Prandtl number

Prt turbulent Prandtl number
Ra Rayleigh number (=gbDTx 3Pr/n 2)
S Slope of the wall temperature linear distribution

T temperature
DT characteristic temperature di�erence
u, v velocity components
x, y space coordinates

Greek symbols
a thermal di�usivity
at turbulent thermal di�usivity

b volumetric coe�cient of thermal expansion
G function of transition from the laminar to the turbulent regime
d boundary layer thickness
r density

n kinematic viscosity
nt eddy viscosity

Subscripts

e external zone of the boundary layer
i internal zone of the boundary layer
iso isothermal con®guration
L length of the wall

m mean
max maximum
x location

tr transition
1 location away from the wall
0 location at the leading edge (x=0)
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the boundary-layer ¯ow induced by the buoyant force.
Their model is accurate even if it needs an empirical

correlation to be closed.
Another alternative to study natural convection over

a ¯at plate with an arbitrary temperature distribution

is the use of numerical methods which are the most
versatile for handling general boundary conditions
[11,13]. Moreover, these numerical methods, either

®nite-di�erence, ®nite-volume or ®nite-element
methods, can handle with turbulent boundary-layer
¯ows.

The objective of the present work is to determine
the in¯uence of the non-uniformity of wall temperature
on heat transfer by turbulent natural convection over a
vertical ¯at plate with a linearly varying temperature

distribution. This problem has not yet been studied in
turbulent regime. The non-uniformity of wall tempera-
ture is de®ned by the slope of the temperature pro®le

(S ). We developed a numerical model based on a
®nite-volume formulation to solve boundary-layer
equations. Turbulence was taken into account via an

algebraic model. A complete parametric study was car-
ried out both in laminar and turbulent regimes and for
di�erent slopes of the wall temperature pro®le. This

numerical approach is of great interest for two main
reasons. On one hand, it gives a better understanding
on convective ¯ow and heat transfer. On the other
hand, it allows to provide easy-to-use correlations

Nu=f(Ra, S ) in order to predict heat transfer.

2. Problem statement

The geometry and the coordinate system of the pre-
sent problem are shown in Figs. 1 and 2, where a verti-
cal plate is depicted with a linear temperature
distribution. The plate is immersed in a quiet ¯uid

which is assumed to be maintained at a uniform tem-
perature. The velocity and temperature ®elds in two-
dimensional, steady-state turbulent natural convective

¯ow may be described by the set of usual boundary-
layer equations, given as:
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with boundary conditions:
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yÿÿÿ41: uÿÿÿ40; vÿÿÿ40; Tÿÿÿ4T1
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3. Numerical procedure

The discretization of the boundary-layer equations is
based on the ®nite-volume formulation. We used the
parabolic characteristic of these equations to solve

them step by step. At the station x, the ¯ow results
from downstream conditions, u-momentum and energy
conservation equations are solved using the TDMA al-
gorithm [14]. Continuity equation is then solved to

obtain the transverse velocity v.

4. Turbulence modelling

The eddy-viscosity model is used to model the

Reynolds stress and the turbulent heat ¯ux. We used
an algebraic model for the turbulent viscosity.
Algebraic models were developed to describe the tur-Fig. 1. Geometry and coordinate system.

Fig. 2. Wall and ambient temperature pro®les according to S.
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bulence in a forced-convection boundary-layer. The
most famous are those of Cebeci-Smith [15] and

Baldwin-Lomax [16]. According to Spalding and
Patankar [17], those models are accurate if the vari-
ation of the mixed length with the wall distance is

expressed by Van Driest's equation. New algebraic
models were developed in the past decade and were
satisfactorily used for solving forced convection

boundary layers [18,19]. Natural-convective boundary
layer ¯ows retained less attention. We selected the
model of Cebeci-Khattab [20] which is derived from

Cebeci-Smith's one and the model of Mason±Seban
[21]. A comparison of these models was made by the
present authors [22]. The model of Mason±Seban was
chosen for the present study. It is characterized by the

contribution of the e�ective viscosity and the turbulent
Prandtl number which are considered separately for
the internal and external zones of the boundary-layer.

For the internal zone

nt � l 2i

����@u@y
����Gtr

Prt � 0:85

li � 0:41y�1ÿ exp �ÿy�=26��

and for the external zone

nt � l 2e

����@u@y
����Gtr

Prt � 0:50

le � 0:09d

with:

y� � yut
n

ut �
������������������
n
�
@u

@y

�
w

s

and d is the distance to the wall where u � 0:05umax.
The limit between the internal and the external zone

is chosen such as the turbulent viscosity is continuous
at this point. The function Gtr describes the transition
from the laminar regime (Gtr=0) to the turbulent state

(Gtr=1). Expressions of this function exist for forced-
convection boundary-layers [23] but the lack of data
for the transition regime for natural-convection bound-
ary-layer led us to consider a linear variation of Gtr

between 0 and 1 which seems to be a good approxi-
mation [24]. According to Doan-Kim-Son [25], the
transition zone extends from Grx=2 � 109 to

Grx=1010.

5. Model accuracy

Using our model, we calculated the laminar natural
convection boundary layer in the case of an isothermal
vertical plate immersed in a stagnant isothermal med-

Fig. 3. Comparison of predicted Nusselt number and maximum upward velocity with similarity solutions in laminar regime.

M. Havet, D. Blay / Int. J. Heat Mass Transfer 42 (1999) 3103±31123106



ium. The comparison with similar solutions [26] is

given in Fig. 3. Similar solutions are the following for
Pr=0.72 (case of air).

Nux � 0:357Gr0:25x �4�

umax ,x � n
��������
Grx
p
2x

: �5�

In laminar regime, whatever the local Grashof num-

ber is, the model agrees very well with similar solutions
for both heat transfer and maximal longitudinal vel-
ocity. In turbulent regime, grid dependence was ®rst
checked. Uniform grid spacing was employed in the

longitudinal direction (x ) but non-uniform grid
spacing was used in the transversal direction ( y ) where
at least one grid point was located inside the viscous

sublayer. Fig. 4 shows the temperature and u-velocity
pro®les for ®ve di�erent grids at Grx=4.5 � 1010.
Further results were obtained using a 40 � 60 mesh

grid.
In turbulent regime, our results were compared with

the experimental data of Doan-Kim-Son [25] and Kato
et al. [27] for Grx=4.5 � 1010. Results show that the

algebraic turbulence model overestimates the maximum
velocity and underestimates the heat transfer by nearly
15% (Table 1). Such results mean that the model pre-

dicts a too weak turbulent di�usion. Despite this, Figs.

5 and 6 show that the numerical pro®les of velocities
and temperatures are in a good agreement with the ex-
perimental measurements. Moreover, Fig. 7 shows that

the slope of our numerical results (the correlation in
Fig. 7) is the same as those of experimental results: so
the discrepancy is not dependent on Grashof number.

6. Parametric study

Our main objective was to determine the in¯uence
of the non uniform wall temperature distribution on

heat transfer. We focused on the case of a linearly wall
temperature distribution characterized by the slope S.
Both negative and positive S values were investigated

Fig. 4. Grid independence demonstration: temperature and u-velocity pro®les.

Table 1

Nux and u-velocity (Grx=4.5�1010)

Mesh x±y 20±10 30±30 60±40 Kato's experiments

Nux 291.8 280.6 279.1 329.0

Umax (cm/s) 67.59 67.63 67.50 59.0 Fig. 5. Comparison of predicted u-velocity pro®les with exper-

imental results in turbulent regime (Grx=4.5� 1010, S=0).
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(Fig. 2). We determined the in¯uence of this parameter
on velocity and temperature pro®les as well as on the

Nusselt number for a large range of Rayleigh number.
Nusselt and Rayleigh numbers were based on the
mean temperature di�erence DT=(Tw,mÿT1).

6.1. Velocity and temperature pro®les

We ®rst studied the in¯uence of the wall temperature

distribution on the u-velocity pro®les (Figs. 8 and 10)
and on the temperature pro®les (Figs. 9 and 11) in
laminar regime (Ra=106) and in turbulent regime

(Ra=1010). For di�erent wall temperature distri-
butions (S=ÿ1, 0, 1), we focused on the in¯uence of S

at three locations (quarter, mid-height and top of the
wall).
In laminar regime (Ra=106), Fig. 8 presents the u-

velocity pro®les at these three locations (x=L � 0:25,
x=L � 0:5 and x=L � 1). As expected, the higher is the
location, the greater is the velocity: in the isothermal

case (S=0), the maximum value of the u-velocity is re-
spectively about 38, 54 and 77 cm sÿ1. The in¯uence of

Fig. 6. Comparison of predicted temperature pro®les with ex-

perimental results in turbulent regime (Grx=4.5�1010, S=0).

Fig. 7. Comparison of predicted Nusselt number with experimental results in turbulent regime (S=0).

Fig. 8. Velocity pro®les for di�erent S and x-location

(Ra=106).
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the wall temperature distribution can be observed: in

the lower part of the wall (x/L=0.25), the u-velocity is
greater for a negative value of S than for the isother-
mal con®guration (S=0); it is lower for a positive

value of S. Fig. 9 presents the corresponding tempera-
ture pro®les. In the lower part of the wall (x/L=0.25),
the wall temperature is greater for a negative value of
S than for the isothermal con®guration (S=0); it is

lower for a positive value of S. The largest temperature
di�erence (Tw,xÿT1) is obtained in the case of S=ÿ1,

and consequently, the buoyancy force is more import-

ant in this case than in the cases S=0 and S=1. The

previous remarks on the u-velocity pro®les con®rm this

result, velocities are the lowest for S=1 and the great-

est for S=ÿ1.
At mid-height (x/L=0.5), the temperature pro®les

are not dependent on S, but u-velocity pro®les depend

on the wall temperature slope. Velocities are larger for

negative than for positive values of S. This result is

due to the fact that the u-velocity at a location x

depends on the cumulative e�ects of the buoyancy

force from the leading edge of the wall to this lo-

cation.

At the top of the wall (x/L=1), the u-velocity pro-

Fig. 9. Temperature pro®les for di�erent S and x-location

(Ra=106).

Fig. 10. Velocity pro®les for di�erent S and x-location

(Ra=1010).

Fig. 11. Temperature pro®les for di�erent S and x-location

(Ra=1010).

Fig. 12. In¯uence of S on the heat transfer.
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®les are similar for S=ÿ1, 0 and 1, due to identical

cumulative buoyant e�ects. The buoyancy force inte-
grated along the plate is equal to r0gbL(Tw,mÿT1).
In turbulent regime (Ra=1010), identical phenomena

are observed (Figs. 10 and 11).
These results show that if the mean temperature

di�erence DT=(Tw,mÿT1) is chosen as the character-

istic temperature di�erence rather than the temperature
di�erence at the leading edge of the wall, the buoyancy
force is not dependent on S, and both Rayleigh and

Nusselt numbers are based on this characteristic tem-
perature di�erence [5].

6.2. Heat transfer

We studied the in¯uence of the wall temperature dis-
tribution on the ratio of Nusselt numbers: Nu

Nuiso
where

Nu is the average Nusselt number for the present con-
®guration, and Nuiso is the average Nusselt number for
the isothermal con®guration at the same Rayleigh

number. The use of this ratio minimizes the systematic
error due to the turbulence model which, as seen
before, underestimates the Nusselt number by nearly

15%. This choice also o�ers the advantage to be inde-
pendent of Prandtl number. Results in Fig. 12 show
that the higher S, the larger the heat transfer. The in-
¯uence of S is rather important since heat transfer is

a�ected by 20% for vSv=1. It is also worth noting that
this e�ect is more important for laminar than for tur-
bulent regime.

Nu

Nuiso

appears to be a linear function of S:

Nu

Nuiso

� 1� aS

where a is a function of Rayleigh number as shown in
Fig. 13.
In laminar regime, a can be considered as constant

but it depends on Rayleigh number in turbulent

regime. In these conditions, the in¯uence of the wall
temperature distribution on the heat transfer can be
®nally given by the following equations:

RaR2� 109:
Nu

Nuiso

� 1� 0:17S �6�

Ra � 2� 109:
Nu

Nuiso

� 1� 4:15Raÿ0:15S: �7�

6.3. Comparison with experimental results

As discussed earlier, Yang et al. [4] showed that heat

transfer is a�ected in the same way by the wall tem-
perature distribution and the medium temperature dis-
tribution. However, literature is poor concerning the

in¯uence of the wall temperature distribution. The lack
of experimental results in such a con®guration led us
to compare our numerical results to experimental

results obtained in the case of an isothermal plate
immersed in a linearly strati®ed medium. The sym-
metry of both con®gurations allows this comparison.
Chen and Eichorn [28] experimentally studied the case

of natural convective heat transfer along a vertical iso-
thermal surface immersed in a strati®ed medium. This
is the only experimental work available in the litera-

ture; Angirasa and Srinivasan [29] numerically studied
this case and their results agree with experimental
results of Chen and Eichorn.

Our numerical results obtained in the case of a non
isothermal plate immersed in an isothermal ¯uid were
compared to their measurements in the case de®ned

Fig. 13. Slope of the linear regression.

Fig. 14. Comparison with Chen and Eichorn experiments.
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by: Gr=106 and Pr=6. Results in Fig. 14 show a
good agreement (maximum relative error<6%).

7. Conclusion

A numerical study of a natural convection ¯ow
along a non isothermal vertical plate immersed in an

isothermal ¯uid was carried out. The wall temperature
was characterized by a linear distribution with a
slope S.

The following conclusions were obtained. First, we
showed that buoyancy forces are locally a�ected by S;
but total buoyancy forces based on mid-height tem-
perature di�erence are not dependent on the slope of

the temperature pro®le. Second, heat transfer is greatly
in¯uenced by the wall temperature distribution. This
in¯uence which is more important in laminar regime

than in turbulent regime is given by the following
equations:

RaR2� 109:
Nu

Nuiso

� 1� 0:17S

Ra � 2� 109:
Nu

Nuiso

� 1� 4:15Raÿ0:15S

where Nu is the average Nusselt number for the non
isothermal case, and Niiso is the average Nusselt num-

ber for the isothermal con®guration at the same
Rayleigh number. In the case of a laminar ¯ow, these
numerical results were compared to Chen and Eichorn
experimental results with a good agreement. So these

equations can be used to easily predict the heat trans-
fer along a non-isothermal vertical plate.
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